Delivery of the vitamin E compound tocotrienol to cancer cells.

نویسنده

  • Christine Dufès
چکیده

Tocotrienol, a member of the vitamin E family of compounds, is currently receiving increased attention owing to its highly promising anticancer effects. However, its potential in cancer therapy is limited by its poor bioavailability and its inability to specifically reach tumors at therapeutic concentrations after intravenous administration. In order to address these problems, various delivery strategies have been proposed, such as the inclusion of tocotrienol in gamma-cyclodextrins, prodrugs and emulsions, and entrapment in lipid nanoparticles and vesicles. Among these approaches, we have demonstrated that the entrapment of tocotrienol within vesicles bearing transferrin, whose receptors are overexpressed on numerous cancer cells, significantly improved the uptake by cancer cells overexpressing transferrin receptors. Consequently, the intravenous administration of tocotrienol entrapped in transferrin-bearing vesicles led to tumor regression and even complete tumor suppression in some cases in a murine tumor model, as well as improvement of animal survival. Transferrin-bearing vesicles are therefore highly promising for the delivery of tocotrienol to cancer cells in vitro and in vivo, and should be further investigated to optimize the anticancer therapeutic effect of tocotrienol.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vitamin E Derivative Alpha-Tocotrienol Failed to Show Neuroprotective Effects after Embolic Stroke in Rats

Objective(s) Previous studies have demonstrated that pretreatment with alpha-tocotrienol (a-TCT) can reduce ischemic damage in mice following middle cerebral artery (MCA) occlusion. It is also reported to decrease stroke- dependent brain tissue damage in 12-Lox-deficient mice and spontaneously hypertensive rats. In the present study, the neuroprotective effects of a-TCT and rosiglitazone (RGZ)...

متن کامل

Disruption of mitochondria during tocotrienol-induced apoptosis in MDA-MB-231 human breast cancer cells.

Tocotrienols, which are Vitamin E isoforms, are known to inhibit the growth of human breast cancer cells due partly to apoptosis. However, the characterization of tocotrienol-induced apoptosis is incomplete, particularly what happens during the initiation phase that precedes execution of the cells. The objective of this study was to clarify the apoptotic effects of tocotrienols, with especial e...

متن کامل

Preclinical Development Vitamin E d-Tocotrienol Augments the Antitumor Activity of Gemcitabine and Suppresses Constitutive NF-kB Activation in Pancreatic Cancer

The NF-kB transcription factor functions as a crucial regulator of cell survival and chemoresistance in pancreatic cancer. Recent studies suggest that tocotrienols, which are the unsaturated forms of vitamin E, are a promising class of anticancer compounds that inhibit the growth and survival of many cancer cells, including pancreatic cancer. Here, we show that tocotrienols inhibited NF-kB acti...

متن کامل

Vitamin E δ-Tocotrienol Induces p27Kip1-Dependent Cell-Cycle Arrest in Pancreatic Cancer Cells via an E2F-1-Dependent Mechanism

Vitamin E δ-tocotrienol has been shown to have antitumor activity, but the precise molecular mechanism by which it inhibits the proliferation of cancer cells remains unclear. Here, we demonstrated that δ-tocotrienol exerted significant cell growth inhibition pancreatic ductal cancer (PDCA) cells without affecting normal human pancreatic ductal epithelial cell growth. We also showed that δ-tocot...

متن کامل

Mechanisms Mediating the Effects of γ-Tocotrienol When Used in Combination with PPARγ Agonists or Antagonists on MCF-7 and MDA-MB-231 Breast Cancer Cells

γ-Tocotrienol is a natural vitamin E that displays potent anticancer activity, and previous studies suggest that these effects involve alterations in PPARγ activity. Treatment with 0.5-6 μM  γ-tocotrienol, 0.4-50 μM PPARγ agonists (rosiglitazone or troglitazone), or 0.4-25 μM PPARγ antagonists (GW9662 or T0070907) alone resulted in a dose-responsive inhibition of MCF-7 and MDA-MB-231 breast can...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Therapeutic delivery

دوره 2 11  شماره 

صفحات  -

تاریخ انتشار 2011